▲第一作者:秦美春博士;通訊作者:李新勇教授,陳國(guó)華教授
通訊單位:大連理工大學(xué),香港理工大學(xué)
論文DOI:10.1021/acssuschemeng.0c04021
大連理工大學(xué)李新勇教授課題組長(zhǎng)期專注綠色催化與能源催化的研究。近日,該課題組與香港理工大學(xué)陳國(guó)華教授課題組合作,在電催化固氮方面的研究中取得新進(jìn)展,相關(guān)成果發(fā)表于國(guó)際頂級(jí)期刊ACS Sustain. Chem. Eng.上。作者以MOF為前驅(qū)體合成了Co-Nx–C催化劑,并應(yīng)用于電催化固氮當(dāng)中,氨產(chǎn)率可達(dá)37.6 μg mg?1 h?1,法拉第電流效率可達(dá)到17.6%, X射線吸收精細(xì)結(jié)構(gòu)光譜結(jié)合量化計(jì)算最終確定Co-N3 為固氮反應(yīng)最主要的活性位點(diǎn)。Co-N3促進(jìn)了N2的吸附,降低了控速步驟的自由能,抑制了析氫反應(yīng),進(jìn)而促進(jìn)了N2還原。在常溫常壓下利用電催化的方法合成氨是一種新興可持續(xù)的氮?dú)夤潭ǖ姆椒?,為取代哈伯法合成氨提供了一種極具潛力的策略。然而,這一策略受限于電催化劑的低活性。M-N-C型單原子催化劑自面世以來(lái),就因其優(yōu)異的催化活性而備受關(guān)注,被廣泛的應(yīng)用于HER、ORR、CO2RR、NRR以及化學(xué)合成等各個(gè)領(lǐng)域。受此普適的催化活性的啟發(fā),我們嘗試將單原子Co-N-C催化劑電催化固氮反應(yīng)中,發(fā)現(xiàn)其同樣具有優(yōu)良的固氮性能和氨選擇性。
以MOF為前驅(qū)體合成了Co-Nx–C催化劑,并應(yīng)用于電催化固氮當(dāng)中,該催化劑具有優(yōu)異的固氮性能,結(jié)合實(shí)驗(yàn)和理論計(jì)算系統(tǒng)研究了Co-Nx–C材料的電催化活性位點(diǎn)。
以MOF為前驅(qū)體, 利用共沉淀法合成了Co-Nx–C單原子催化劑。如圖1所示,從HAADF-STEM圖可得,Co以單原子的形式均勻的分散在C基骨架上, 未發(fā)現(xiàn)納米顆粒狀的鈷, 鈷氮碳元素均勻分散在碳平面上。
▲Figure 1. TEM images of (a) N?C, (b) Co?C, and (c) Co?Nx?C. (d) XRD patterns of N?C, Co?C, and Co?Nx?C. (e) HAADF-STEM imageof Co?Nx?C. (f) EDS mapping of Co?Nx?C for C, N, and Co.
如圖2所示,結(jié)合Raman, BET,孔徑分布及TPD表征可得材料的石墨化程度較好,且具有較大的比表面積和多級(jí)孔結(jié)構(gòu),豐富的孔結(jié)構(gòu)可以顯著促進(jìn)氮?dú)獾幕瘜W(xué)吸附,進(jìn)而促進(jìn)后續(xù)的氮?dú)庀虬钡霓D(zhuǎn)化。▲Figure 2. (a) Raman spectra, (b) pore size distribution, (c) specific surface area and total pore volume results, and (d) N2-TPD and He-TPD curves of N?C, Co?C and Co?Nx?C.
如圖3所示,作者對(duì)所合成材料進(jìn)行了電化學(xué)活性測(cè)試, Co?Nx?C催化劑的氨產(chǎn)率可達(dá)37.6 μg mg?1 h?1,法拉第電流效率可達(dá)17.6%,相較于N?C和Co?C催化劑,Co?Nx?C催化劑具有較高的固氮活性。▲Figure 3. (a) LSV curves in N2 and Ar atmospheres of N?C, Co?C, and Co?Nx?C. (b) NH3 yield of Co?Nx?C at ?0.2 to ?1.0 V versus an RHE. (c) NH3 yield of N?C, Co?C and Co?Nx?C at ?1.0 V versus an RHE. (d) NH3 faradaic efficiency of Co?Nx?C at ?0.2 to ?1.0 V versus an RHE. (e) NH3 faradaic efficiency of N?C, Co?C, and Co?Nx?C at ?1.0 V versus na RHE. (f) Cycle experiments of Co?Nx?C at ?0.9 V versus an RHE.
結(jié)合XPS及XAS表征,進(jìn)一步確定了Co?Nx?C的配位環(huán)境,利用最小二乘法擬合可得材料中單原子Co的配位環(huán)境主要為Co?N3?C,即一個(gè)單原子鈷與三個(gè)氮相連。▲Figure 4. High-resolution XPS of (a) N 1s and (b) Co 2p 2/3 for N?C, Co?C, Co?Nx?C?2, Co?Nx?C?12, Co?Nx?C?22, and Co?Nx?C. (c) NH3 yield of Co?Nx?C?2, Co?Nx?C?12, Co?Nx?C?22, and Co?Nx?C at ?0.9 V versus an RHE. (d) Dependence of the NH3 yield on the contents of different Co?Nx dopants at ?0.9 V versus an RHE.
▲Figure 5. (a) Normalized X-ray absorption near-edge structure (XANES) spectra of Co?Nx?C and Co foil at the Co?K edge. (b) Fourier transform of extended X-ray absorption fine structure (FT-EXAFS) measurements of Co?Nx?C and Co foil, and the red line represents the corresponding EXAFS r space fitting curves of Co?Nx?C.
利用DFT量化計(jì)算再次驗(yàn)證了Co?N3?C的配位環(huán)境,同時(shí)計(jì)算了氮?dú)庠贑o?N3?C上合成氨的反應(yīng)路徑,氮?dú)夥肿又饕詄nd-on的形式吸附在單原子鈷上面,整個(gè)反應(yīng)遵循distal路徑。▲Figure 6. (a) Optimized structure of Co?N3?C. Optimized structures of N2 adsorption on Co?N3?C for (b) side-on and (c) end-on configurations. The free energy diagrams for the N2RR through distal and alternating pathways at zero potential on the Co?N3?C structure in the form of (d) end-on and (e) side-on configurations. (f) Free energy diagrams for the N2RR through the distal pathway at an applied potential (?0.97 V) on the Co?N3?C structure.