研究背景
相比于一價(jià)載流子和二價(jià)載流子(如 Li+、Na+、K+、Mg2+、Zn2+、Ca2+),三價(jià)載流子(即 Al3+)由于其三電子的電化學(xué)特征而具有更高的電荷密度,對應(yīng)的電化學(xué)儲能器件也具有更高的理論容量。然而現(xiàn)有基于三價(jià) Al3+ 的電化學(xué)儲能器件,即鋁離子電池的進(jìn)一步發(fā)展仍受限于以下幾個(gè)關(guān)鍵問題:較低的能量轉(zhuǎn)化效率、較差的循環(huán)穩(wěn)定性以及較慢的充放電速度。這些問題歸根結(jié)底都是由 Al3+ 周圍較強(qiáng)的靜電場導(dǎo)致的,較強(qiáng)的靜電場使 Al3+ 與電解液中的溶劑分子以及宿主電極之間存在很強(qiáng)的相互作用。這導(dǎo)致 Al3+ 在電極/電解液界面上的去溶劑化過程非常緩慢,也使得去溶劑化之后的 Al3+ 在電極材料內(nèi)部的傳輸非常困難。
屏蔽 Al3+ 周圍靜電場最簡單且最有效的方法是在其周圍引入一個(gè)溶劑化殼層,也就是采用溶劑化 Al3+ 作為載流子;當(dāng)使用溶劑化 Al3+ 作為載流子時(shí),對應(yīng)器件的電化學(xué)儲能機(jī)理也就變成了快速的電容過程。電容型的儲能機(jī)理可以為器件提供接近 100% 的能量轉(zhuǎn)化效率、優(yōu)異的循環(huán)穩(wěn)定性以及超快的充放電速度。雖然具有以上諸多優(yōu)勢,但溶劑化 Al3+ 具有較大的水合半徑(0.475 nm)和較高的去溶劑化能(4525 kJ mol?1),這些特點(diǎn)對電極材料孔結(jié)構(gòu)的設(shè)計(jì)提出了嚴(yán)苛的要求。即為了實(shí)現(xiàn) Al3+ 的高效存儲,電極材料應(yīng)具有足夠大的特征孔去容納大尺寸的 Al3+,同時(shí)為了保證高的電荷存儲密度,電極材料還應(yīng)具有致密有序的微觀結(jié)構(gòu),然而現(xiàn)有的電容型電極材料均不具備這些特征。因此,為了實(shí)現(xiàn)溶劑化 Al3+ 的高效存儲,設(shè)計(jì)并構(gòu)建孔結(jié)構(gòu)與溶劑化 Al3+ 高度匹配的電極材料是非常關(guān)鍵的,同時(shí)也是極具挑戰(zhàn)的。
工作簡介
針對以上問題,近日清華大學(xué)化學(xué)系曲良體教授課題組開發(fā)了一種自適應(yīng)的電極材料孔結(jié)構(gòu)重塑方法,對石墨烯、MXenes 等典型電容型電極材料的孔結(jié)構(gòu)進(jìn)行了重塑,并以此實(shí)現(xiàn)了電容型電極材料對溶劑化 Al3+ 的高效存儲。具體而言,該自適應(yīng)的電極材料孔結(jié)構(gòu)重塑方法是在電場力驅(qū)動(dòng)下,向電極材料的特征孔內(nèi)嵌入起支柱作用的離子,從而使材料在不斷適應(yīng)離子存儲要求的同時(shí)完成自身孔結(jié)構(gòu)的重塑。采用該方法重塑的電極材料其孔結(jié)構(gòu)既能有效容納大尺寸的溶劑化 Al3+,同時(shí)又能對溶劑化 Al3+ 離子進(jìn)行最為致密的存儲,從而使電極材料表現(xiàn)出超高的電荷存儲密度。得益于這種電極材料孔結(jié)構(gòu)重塑方法的良好普適性,作者進(jìn)一步開發(fā)了基于石墨烯和 MXenes 的搖椅式鋁離子電容器。該鋁離子電容器具有 2.0 V 的高工作電壓,112 W h L?1 的高能量密度,以及30 000 W L?1 的高能量密度,同時(shí)能穩(wěn)定充放電循環(huán)超過 10 000 次。相關(guān)成果發(fā)表在英國皇家化學(xué)會期刊 Energy Environ. Sci. 上,清華大學(xué)化學(xué)系博士畢業(yè)生馬鴻云為本文第一作者,中科院蘭州化物所閻興斌研究員(現(xiàn)中山大學(xué)材料科學(xué)與工程學(xué)院教授)為本文共同通訊作者。
圖文詳情

▲ | Fig. 1 An aqueous rocking-chair aluminum-ion capacitor. (a) Merits of Al3+ ions acting as the charge carriers. (b) Schematic illustration of the aqueous rocking-chair aluminum-ion capacitor. (c) Typical cyclic voltammetry curves of the graphene-based cathode and the MXene-based anode. |

▲ | Fig. 2 Pore-structure remolding of the graphene-based cathode. (a) Schematic illustration of the self-adaptive electrochemical pore-structure remolding process. (b) The first twenty CV curves of HOPC in the Al2(SO4)3 electrolyte. (c) The first twenty CV curves of HOPC in the H2SO4 electrolyte, producing electrochemically activated HOPC (AHOPC). (d) The first twenty CV curves of AHOPC in the Al2(SO4)3 electrolyte, producing completely remolded AHOPC (RHOPC). (e–g) Contour-type in situ Raman spectra of (e) HOPC in the Al2(SO4)3 electrolyte, (f) HOPC in the H2SO4 electrolyte, and (g) AHOPC in the Al2(SO4)3 electrolyte. |

▲ | Fig. 3 Electrochemical performance of the RHOPC electrode in the Al2(SO4)3 electrolyte and its charge storage mechanism study. (a) CV curves at different scan rates (mV s?1). (b) GCD curves at different current densities (A g?1). (c) Gravimetric and volumetric capacitances at different current densities. (d and e) In situ FTIR spectra with different representations. (f) Corrected contour-type in situ FTIR spectra. (g) Electrode mass change upon potential variation during the EQCM test. (h) Electrode mass change versus CV scanning during the EQCM test. |

▲ | Fig. 4 Pore-structure remolding of the MXene-based anode. (a and b) TEM image (a) and STEM image (b) of Ti3C2Tx sheets. (c–f) TEM image (c), STEM image (d), HRTEM image (e), and SAED pattern (f) of AT-Ti3C2Tx sheets. (g and h) Cross-sectional SEM images of the (g) Ti3C2Tx film and (h) AT-Ti3C2Tx film. (i) The first twenty CV curves of AT-Ti3C2Tx in the Al2(SO4)3 electrolyte. (j) Contour-type in situ XRD patterns of AT-Ti3C2Tx in the Al2(SO4)3 electrolyte. (k) Typical XRD patterns of AT-Ti3C2Tx in the Al2(SO4)3 electrolyte before and after pore-structure remolding. |

▲ | Fig. 5 Electrochemical performance of the RAT-Ti3C2Tx electrode in the Al2(SO4)3 electrolyte and its charge storage mechanism study. (a) CV curves at different scan rates (mV s?1). (b) GCD curves at different current densities (A g?1). (c) Gravimetric and volumetric capacitances at different current densities. (d) Contour-type in situ Raman spectra. (e) Contour-type in situ XRD patterns. (f) In situ XRD patterns. (g–i) STEM-EDS mapping at fully discharged state: (g) TEM image, (h) corresponding STEM image, and (i) EDS mappings of characteristic elements. |

▲ | Fig. 6 Electrochemical performance of as-built aqueous rocking-chair AIC. (a) CV curves with different cut-off voltages (V). (b) CV curves at different scan rates (mV s?1). (c) GCD curves at different current densities (A g?1). (d) Gravimetric and volumetric capacitances at different current densities. (e) Capacitance delivery ratios of both cathode and anode at different current densities. (f) Ragone plots of the AIC, with red stars based on active materials and blue stars based on the whole device. (g) Long-term cycling stability at a current density of 5 A g?1. |
工作總結(jié)
本文開發(fā)了一種自適應(yīng)的電極材料孔結(jié)構(gòu)重塑方法,并對石墨烯、MXenes 等典型電容型電極材料的孔結(jié)構(gòu)進(jìn)行了重塑,從而使其能夠?qū)θ軇┗?Al3+ 進(jìn)行高效存儲。經(jīng)過孔結(jié)構(gòu)重塑的電極材料其孔結(jié)構(gòu)既能有效容納溶劑化 Al3+,同時(shí)又能保證對溶劑化 Al3+ 進(jìn)行最致密的存儲,從而達(dá)到最理想的電荷存儲狀態(tài)。對于上述自適應(yīng)的孔結(jié)構(gòu)重塑過程,以及溶劑化 Al3+ 在電極材料內(nèi)部的存儲狀態(tài),本文分別采用原位拉曼光譜、原位XRD、原位紅外光譜以及電化學(xué)石英晶體微天平等先進(jìn)的原位表征手段進(jìn)行了系統(tǒng)地研究。在此基礎(chǔ)之上,構(gòu)建出了高性能的搖椅式鋁離子電容器,該鋁離子電容器表現(xiàn)出 2.0 V 的高工作電壓,112 W h L?1 的高能量密度,30 000 W L?1 的高功率密度,以及循環(huán) 10 000 圈之后 91.8% 的高容量保持率。如此優(yōu)異的電化學(xué)性能充分體現(xiàn)出三價(jià) Al3+ 作為載流子在電化學(xué)儲能器件中的優(yōu)越性,同時(shí)也進(jìn)一步證明本文所開發(fā)的自適應(yīng)孔結(jié)構(gòu)重塑策略對三價(jià) Al3+ 高效存儲的有效性與合理性。
論文信息
Aqueous rocking-chair aluminum-ion capacitors enabled by a self-adaptive electrochemical pore-structure remolding approach
Hongyun Ma, Hongwu Chen, Yajie Hu, Bingjun Yang, Jianze Feng, Yongtai Xu, Yinglun Sun, Huhu Cheng, Chun Li, Xingbin Yan*(閻興斌,中山大學(xué)) and Liangti Qu*(曲良體,清華大學(xué))
Energy Environ. Sci., 2022,15, 1131-1143
http://doi.org/10.1039/D1EE03672F













