氧化鎳(NiOx)由于其較低的成本、更高的透光率和優(yōu)越的穩(wěn)定性在反式鈣鈦礦太陽(yáng)能電池中廣泛使用。然而,NiOx與鈣鈦礦層存在接觸不良的問(wèn)題,這不僅阻礙了界面上有效的電荷轉(zhuǎn)移,而且還限制了鈣鈦礦晶體的生長(zhǎng),最終導(dǎo)致器件性能不佳。自組裝單分子層(SAMs)被認(rèn)為是改善NiOx器件界面的有效方法,但SAMs的端基存在不能有效鈍化鈣鈦礦材料底面缺陷的問(wèn)題。 近日西北工業(yè)大學(xué)李炫華教授團(tuán)隊(duì)提出在NiOx/Me-4PACz與鈣鈦礦層之間引入對(duì)亞苯基二磷酸(p-XPA)界面層,優(yōu)化了空穴傳輸層表面平整度,改善界面接觸,抑制鈣鈦礦底面缺陷,提升了反式器件的效率和穩(wěn)定性。
Figure 1. Effect of p-XPA on surface morphology and electrical properties of HTL. (a) The schematic diagram of the fabrication process of the buried interfacial modification strategy, as well as the microstructure arrangement of p-XPA and Me-4PACz on the NiOx surface. The AFM images of (b) control and (c) target, respectively. (d, e) KPFM images of the control and target, respectively. The conductivity (f) and the hole mobility (g) of control and target films. 引入p-XPA后,NiOx/Me-4PACz的表面粗糙度明顯降低,說(shuō)明其表面更加平整,有利于鈣鈦礦晶粒生長(zhǎng),提升鈣鈦礦薄膜質(zhì)量。此外,NiOx/Me-4PACz薄膜的表面電勢(shì)顯著降低,并且其電導(dǎo)率以及空穴遷移率升高,表明載流子在鈣鈦礦層與空穴傳輸層之間傳輸勢(shì)壘減小,加快界面載流子傳輸,抑制界面非輻射復(fù)合。 Figure 2. Optoelectronic performance. (a) Schematic diagram of the inverted device and interaction between p-XPA and perovskite film. (b, c) The forward and reverse sweep J-V for the control and target. (d) EQE of the control and target. (e) The SPO of the control and target. (f) Energy diagram for NiOx/Me-4PACz and NiOx/Me-4PACz/p-XPA compared with perovskite. (g) Light intensity dependence of VOC. (h) Mott-Schottky plots. 最終,經(jīng)過(guò)p-XPA修飾的器件的效率達(dá)到25.87%(認(rèn)證為25.45%)。未封裝的修飾器件具有良好的熱穩(wěn)定性,在85℃和氮?dú)獗Wo(hù)環(huán)境下老化33天后保持80.3±1.8%的初始效率。封裝的修飾器件也具有更好的操作穩(wěn)定性,并在1100小時(shí)的最大功率點(diǎn)監(jiān)測(cè)下保持其初始效率的82.7%。 論文信息 Enhancing Hole Transport Uniformity for Efficient Inverted Perovskite Solar Cells through Optimizing Buried Interface Contacts and Suppressing Interface Recombination Xilai He, Hui Chen, Jiabao Yang, Tong Wang, Xingyu Pu, Guangpeng Feng, Shiyao Jia, Yijun Bai, Zihao Zhou, Qi Cao, Xuanhua Li Angewandte Chemie International Edition DOI: 10.1002/anie.202412601